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Surface growth models with a random-walk-like nonlocality
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To understand the effects of a random-walk-like nonlocality on the dynamical scaling properties of surface
growths, a stochastic growth model in which the height differencenh( i ,i 11)5uhi2hi 11u of a chosen nearest
neighbor column pair (i ,i 11) is decreased by one unit is introduced and studied by simulations. The prob-
ability P( i ,i 11) of choosing a column pair (i ,i 11) on a one-dimensional substrate is assigned asP( i ,i 11)

5eknh( i ,i 11)/( j 51
L eknh( j , j 11). On a substrate of given sizeL, the dynamical scaling property satisfies a normal

scaling behavior asW5La f (t/Lz), whenk is very small. Ifk becomes moderately large, the scaling property
with the dynamic exponentz51 as in diffusion-limited erosion appears. Ifk becomes very large, no surface
roughening is found.
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I. INTRODUCTION

Recently, many dynamical scaling theories for surfa
growth under thermal white noise have been investigated
to both theoretical and experimental importance for the lo
time, large scale surface morphology@1#. The dynamical
scaling hypothesis used in these studies is

W5La f ~ t/Lz!, ~1!

whereW is a root-mean-square fluctuation of surface heigh
a is the roughness exponent, andz is the dynamic exponent
The scaling function satisfiesf (x)→const. for x@1 and
f (x);xb (b[a/z) for x!1 @1#. Among the scaling theorie
@1# many studies@2–13# have been focused on the line
growth equations

]hq~ t !

]t
52nuquzhq~ t !1hq~ t !, ~2!

]h~x,t !

]t
52n~2¹2!z/2h~x,t !1h~x,t !. ~3!

In particular, Edwards-Wilkinson~EW! equation withz52
@3# and the related discrete growth models@2,4# have been
well understood now. Moreover the stochastic growth m
els @4–8#, which are believed to follow the Mullins-Herring
@9# equation withz54, have now been understood to a c
tain maturity level. In contrast, the scaling properties for E
~2! with z51 @10,11# have not been understood so well a
only a few stochastic growth models@10–13# related to Eq.
~2! with z51 have been suggested and studied.

In the unit evolution process of normal surface evoluti
models@1#, a column is randomly selected and the evoluti
occurs only around the chosen column. This randomnes
reflected by the second term of Eq.~2! as a local white noise
wherehq(t) is a Fourier component of Gaussian white no
that has zero mean ^hq(t)&50 and covariance
^hq(t)hq8(t)&5DL2ddq,2q8d(t2t8). Therefore the unit
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evolution process in many models depends on the local m
phology near the randomly selected column@1#. Among such
models is the Ballistic erosion~BE! model@12,14,15# which
is known to belong to EW universality class. In BE model
particle from outside of a material comes straight do
along a randomly selected column and it knocks out the fi
particle which it encounters.@See Fig. 1~a!.# In BE model
evolution processes are local processes, which make
model belong to EW universality class.

In contrast the models@10–13# which have been sug
gested to follow the linear equation~2! with z51 have a
nonlocal relaxation dynamics. The diffusion-limited erosi
~DLE! model @10–12# and time-reversed dielectric break
down model~TDBM! @13# have such nonlocality in selectin
a site for the evolution. In DLE@10–12#, a particle which
starts far from the existing material undergoes a rand
walk until it touches a material particle on the surface. Th
the two particles disappear by the reaction such asA1B
→0 @12#. The incoming particle in DLE has more chance
touch some protruded part of surface than a flat part beca
of the nonlocal nature of random walks.@See Fig. 1~b!.# The
DLE model thus has random-walk-like nonlocality in sele
ing a site where an evolution process takes place. This n
local behavior makes the surface less rough and follows
~2! with z51.

The space-time dependence of densityf(x,t) of random
walkers follows the diffusion equation]f/]t5Df“

2f. The
probability that an incoming particle reaches a site on

FIG. 1. Schematic diagram for comparison of the local noise~a!
to the random-walk-like nonlocality~b! in erosion models.~a! The
erosive process in the model with local noise occurs directly a
randomly chosen column as in ballistic erosion model.~b! The ero-
sive process has more chance to occur at some protruded pa
surface when a random walker mediates the process as in
model.
©2003 The American Physical Society21-1
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surface is proportional tou“fu in the DLE model. From this
theoretical basis we recently suggested TDBM@13# in which
the evaporation probability of a particle on the surface
assigned to be proportional tou“fu, wheref is the steady-
state solution of the diffusion equation with a proper boun
ary condition. In TDBM the evaporation probability at a pr
truded part of surface is larger than at a flat part beca
u“fu becomes larger at the protruded part of surface. T
dynamic scaling behavior of TDBM has been shown to
the same as that of DLE. From these models, we can un
stand that the random-walk-like nonlocality is essential
the scaling behavior which follows Eq.~2! with z51.

However, these models@10–13# with such nonlocality to
give the dynamic exponentz51 are all erosive models
where the surface height is always decreasing. Furtherm
the erosive process in these models is not like a comm
process of most growth model which changes surface he
h(x,t) directly, but is dependent on a random walker or de
sity field gradientu¹fu. This indirect process makes it ver
difficult to understand how the dynamical scaling behav
with z51 arises. Thus, our purpose in this paper is to es
lish a more simple growth model which has the dynami
scaling behavior withz51 and the random-walk-like nonlo
cality as DLE and TDBM. The simple growth model for ou
purpose means the model in which the surface height is
ways increasing andh(x,t) is directly changed.

II. MODEL

We now want to explain our growth model in detail. O
model is defined only on a one-dimensional~1D! substrate,
but generalization to those on higher-dimensional substr
can be easily obtained from the definition of 1D model.
can be seen in Eqs.~2! and ~3!, the change ofh(x,t) for z
51 scaling behavior should depend on the magnitude
local slope,u“h(x,t)u. A discrete version of the local slop
u“h(x,t)u is Dh( i ,i 61)5uh( i ,t)2h( i 61,t)u. From this ob-
servation, we can notice that the height change must dep
on the height differenceDh( i ,i 11) for z51 scaling behavior.

The growth rule for our purpose can thus be establishe
what follows. Consider the surface configuration describ
by integer height variables$h( i ,t)%, where i is an integer
parameter which describes thei th column on a 1D chain
Then a column pair (i ,i 11) is chosen based on the pro
ability assignmentP( i ,i 11) as

P( i ,i 11)5
eknh( i ,i 11)

(
j 51

L

eknh( j , j 11)

, ~4!

where L is the size of substrate. Then take the followi
growth process at the chosen column pair (i ,i 11); h( i
11,t)→h( i 11,t)11 if h( i ,t)>h( i 11,t), or h( i ,t)
→h( i ,t)11 if h( i ,t),h( i 11,t) . This growth process
should decrease the height differenceDh( i ,i 11) asDh( i ,i 11)
→Dh( i ,i 11)21. Of course we use the lateral periodic con
tion h( i 1L,t)5h( i ,t). Unlike local model the column pai
for a growth process is not chosen randomly. The selec
03612
s

-

se
e
e
er-
o

re
n
ht
-

r
b-
l

l-

es

f

nd

as
d

-

n

of the pair in the system depends on itsDh( i ,i 11) through Eq.
~4!. Since the probability assignment has such nonlocal
ture, the column pair with larger value ofnh( i ,i 11) has more
chance to be selected for growth than that with smaller va
of nh( i ,i 11) . This nonlocal nature of our model is very sim
lar to those of DLE or TDBM in the sense that the mo
protruded part can be chosen for the evolution with the m
chance. Thus, the global model with an appropriate rang
k is expected to have scaling behavior withz51, which will
be shown.

We can also consider a local version of our model
which the pair for growth is chosen randomly as in the B
model. We can establish local model as follows; first selec
column l randomly. ThenP( l ,l 11) or P( l 21,l ) which selects a
nearest neighbor column pair between two column pa
( l ,l 11) and (l 21,l ) is defined as

P( l ,l 11)5
eknh( l ,l 11)

(
m561

eknh( l ,l 1m)

, P( l 21,l )512P( l ,l 11) .

~5!

Of course the other growth process at the selected colu
pair is the same as that of the global model. In this lo
model the growth process is very similar to other local mo
els, because a column is randomly chosen and the gro
process centered at the chosen column always takes pla

III. RESULTS

Now let us explain the simulation results. We perfor
numerical simulations, starting from a flat surface of line
sizeL with the lateral periodic boundary condition. We me
sure the surface fluctuation widthW as

W2~L,t !5
1

L (
i 51

L K Fh~ i ,t !2
1

L (
i 51

L

h~ i ,t !G2L . ~6!

All data are taken by averaging over more than 100 indep
dent runs.

We first want to mention simulation results for the loc
model with assignment~5! briefly. Because the unit growth
process in the local model reduces the local slope at
randomly chosen column, the local model should have
negative local current@16# as the models which belong t
EW universality class@1–3#. We can thus guess that the loc
model belongs to EW universality class regardless of
value of k. We confirm it by checkinga51/2 andb51/4
for any k in the simulations.

Next we discuss simulation results for the global mod
with the probability assignment~4!. The first result to discuss
is the dependence ofW on k for a fixed system sizeL. For
small k, a normal scaling behavior as Eq.~1! is found. One
example is shown in Fig. 2~a!. In Fig. 2~a!, we display the
early-time (t!Lz) results fork52 andL5256. The growth
exponentb is estimated by fitting the data to the relatio
W.tb and obtained result isb50.25(1). The power law
behaviorW(t).tb with b close to EW value~or b51/4) is
confirmed to exist fork52 on substrates with sizes fromL
1-2
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SURFACE GROWTH MODELS WITH A RANDOM- . . . PHYSICAL REVIEW E 68, 036121 ~2003!
525 up to L5211. Furthermore we study the behavior
saturatedW, Ws @5W(t@Lz)#, by using the substrates wit
sizesL525, . . . ,211. We find thatWs for k52 also satisfies
usual scaling behaviorWs.La with a50.49(1), which is
also very close to EW value (a51/2) as shown in the inse
of Fig. 2~a!. It is also found that this kind of normal EW
scaling behavior exists for 0,k,kp(L) in the system with a
fixed sizeL.

For k.kp(L) we find two different regimes. In the mod
erate range ofk or in kp(L),k,k r(L) the scaling behavior
of W is found to follow Eq.~2! with z51 as DLE or TDBM.
For the specifics see Fig. 2~b!, where the scaling behavior o
W for k56 (.kp) on the substrate withL5256 is dis-
played.W(t) in Fig. 2~b! is shown to nicely follow the so-
lution of Eq. ~2! with z51 @10,11#,

FIG. 2. ~a! Plot of W againstt for k52 and L5256 in the
early-time regime (t!Lz). The straight line represents the relatio
W;tb with b50.25. The inset shows the plot ofWs for k52
againstL in the saturation regime (t@Lz). The straight line denotes
the relation Ws;La with a50.49. Used system sizes areL
525,26,27,28,29,210, and 211. ~b! Plot of W22Ws

2 against ln(t/256)
for k56 andL5256. The solid curve is the fitting of data to th
relation ~7! or ~8!, which shows thatW2 follows nicely the linear
equation~2! with z51.
03612
W25
D

2pn H lnS L

aD1 lnF12expS 24pnt

L D G J ~7!

or

W25Ws
21

D

2pn H lnF12expS 24pnt

L D G J . ~8!

by plotting (W22Ws
2) against ln(t/L). Here D comes from

the covariancê hq(t)hq8(t)&5DL2ddq,2q8d(t2t8) of the
noisehq(t), n is one of the coefficients in Eq.~2!, anda is
the short range cutoff distance@10,11#. a in our simulation
should be the unit lattice spacing and thusa51. Of course
k r(L) also depends on the system sizeL. If k becomes large
or k.k r(L), no roughening regime or the flat-surface r
gime appears.

To see the dependence ofkp andk r on the system sizeL,
we estimatekp and k r for L525, . . . ,210. The results are
displayed in Fig. 3. The solid lines between the data and
dashed line aboveL5210 in Fig. 3 are from simple interpo-
lations and extrapolations. Figure 3 can be also regarde
the phase diagram for EW,z51 and flat-surface regimes i
k-L parameter space. Bothk r(L) and kp(L) seem to be
monotonically increasing functions ofL. In the thermody-
namic limit (L→`) bothkp andk r go to infinity. The model
then always crossovers to EW universality class in the li
L→` for a givenk. To get thez51 regime in theL→`,
one must take the limitk→` carefully, so that (L,k) should
be in thez51 regime while taking both the limits. It is found
that the crossover behavior between the regimes is some
broad.~See the shaded regions in Fig. 3.! Because we do no
have a physically sound theory for the finite size effects,

FIG. 3. Dependence ofkp andk r on the system sizeL. kp and
k r are estimated in the systems with the sizesL525,26, . . . ,210.
The solid lines between data points and the dashed line abovL
5210 are from simple interpolations and extrapolations. The sha
area can be regarded as the crossover region from one regim
another regime. This figure can also be the estimated phase dia
for EW, z51 and flat-surface regimes.
1-3
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cannot tell that such a crossover comes from the intrin
character of the model or the finite size effects. Further st
to characterize the crossover is left for future research.

The existence of such three regimes or the existence okp
and k r can be understood from Eq.~4!. Even though
Dh( i ,i 11) is large, the probabilityP( i ,i 11) to choose the pair
( i ,i 11) for smallk (k,kp) cannot become large enough
have the random-walk-like nonlocality. This fact means t
the protruded part cannot be taken with the same probab
as that in DLE or TDBM for smallk. Therefore, in the range
k,kp a column pair for growth is selected almost random
and the growth process is nearly the same as that in the
model. This is the physical reason why the models fork
,kp belong to EW universality class witha51/2 and z
52. For the moderately largek or in the rangekp,k
,k r , P( i ,i 11) for the largeDh( i ,i 11) is enhanced enough t
show the random-walk-like nonlocality as in DLE or TDBM
so that the scaling behavior withz51 appears. This behavio
comes from the termekDh( i ,i 11) in Eq. ~4!. In other words the
random-walk-like behavior can be understood from the s
chastic behaviors of the probability assignment~4! in the
rangekp,k,k r . For k.k r , P( i ,i 11) for Dh( i ,i 11)Þ0 be-
comes very large and we can expect the layer-by-la
growth, where the surface becomes unroughened.

We now want to characterize the dynamic scaling beh
ior of z51 regime more specifically.W(L,t) in z51 regime
of Fig. 3 satisfies Eqs.~7! and ~8!. However the constan
D/2pn varies ask varies within thez51 regime in Fig. 3.
Furthermore to obtain one common value for the coeffici
D/2pn in different system sizesL, k should be carefully
tuned in thek-L parameter space. To see this effect,
dependence ofWs

2 of Eqs.~7! and ~8! on L

Ws
25

D

2pn
ln~L/a!5

D

2pn
ln L, ~9!

FIG. 4. Plots ofWs
2 against lnL for a set of (L, k) combinations;

(25, 3.3!, (26, 4.0!, (27, 4.9!, (28, 5.9!,(29, 7.0!, and (210, 8.1!.
The data nicely follow Eq.~9!. The slope of the fitted line gives
D/2pn50.390(2).
03612
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must be taken into consideration. In Eq.~9! we seta51,
which is the short range cutoff distance. In Fig. 4 we disp
Ws’s for a certain set of combinations ofL and k values,
which satisfies Eq.~9! with a fixed value ofD/2pn well.
The set consists of (L525, k53.3), (26, 4.0!, (27, 4.9!,
(28, 5.9!, (29, 7.0!, and (210, 8.1!. From the fitting of Eq.~9!
to Ws in Fig. 4, we getD/2pn50.390(2) for the set of (L,
k) combinations. In Fig. 5, we plotW22Ws

2 against ln(t/L)
for the same set in Fig. 4. In Fig. 5 the solid curve from t
scaling relation based on Eq.~7! with D/2pn50.390(2) is
shown to explain the dynamical data ofW(t) for the set of
(L, k) combinations very well. This kind of behavior is con
firmed for other well-tuned sets of (L, k) combinations. The
results in Figs. 4 and 5 show thatk should be varied properly
for variousL to obtainz51 scaling behavior with a fixed
D/2pn. In DLE and TDBM,W shows exactly the same sca
ing behavior as Fig. 5 without parameter tunings. The sca
behavior in DLE and TDBM comes from the intrinsi
random-walk-like nonlocality, which comes from the stead
state diffusion equation, i.e., Laplace equation@10,11,13#.
The scaling behavior of DLE and TDBM thus comes fro
the Laplace equation with proper boundary conditions. Fr
the view of our model we can consider that the nonloca
from the Laplace equation naturally and spontaneously
lects the parameters for thez51 scaling behavior with the
naturally fixedD/2pn.

IV. SUMMARY AND DISCUSSIONS

In summary, we studied the surface fluctuationW for
growth models with the probability assignment~4!. For k
,kp , W satisfies the normal scaling behavior~1! with the
EW exponentsa51/2 andz52. Forkp,k,k r , W follows
Eq. ~7! nicely, which is the solution of the linear equation~2!
with z51. These results mean that the models withkp,k

FIG. 5. Plots ofW22Ws
2 against ln(t/L) for the same set of (L,

k) combinations in Fig. 4. The inset showsW2 for each combina-
tion nicely follows Eq.~7! or ~8! usingD/2pn50.390(2) which is
obtained from Fig. 4. The main plot shows that all the data for
set collapse well to one curve based on the scaling relation~7! with
D/2pn50.390(2).
1-4
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,kr have the same random-walk-like nonlocality as DL
and TDBM. Fork.k r no surface roughening is found.k r
andkp depend onL. Furthermorek should be varied prop
erly for differentL in kp,k,k r to obtainz51 scaling be-
havior with a fixedD/2pn. In conclusion the effect of the
random-walk-like nonlocality on dynamical structure can
understood directly from Eq.~4!. The range ofk in which
the scaling behavior withz51 or the random-walk-like non
locality occurs is determined by the factoreknh( i ,i 11) in Eq.
~4!, becauseeknh( i ,i 11) for a pair with largenh( i ,i 11) cannot
become large enough to show the random-walk-like non
cality whenk is small ork,kp .

Final discussions are on three points. One is on
generalized version of the local model with Eq.~5!. In the
local model a column pair for growth is selected on
between the two pairs centered at the randomly cho
column l. Instead we can considern (,L) pairs with
the randomly chosen columnl at the center. Then the prob
ability assignment should be modified asP( i ,i 11)

5eknh( i ,i 11)/(m52n/2
n/221 eknh( l 1m,l 1m11). This modified version

of the model is quite similar to the erosion model, in whi
the incoming particle undergoes a biased random walk to
material@12#. If the particle is biased to the material, then t
lateral distance to sweep for the particle is limited befo
touching surface and thus the erosive process only occur
the columns within the limited lateral distance centering
column above which the particle starts. Ifn/L→0, the modi-
fied model with then pairs for selection is confirmed t
belong to EW universality class as the erosion model w
the biased random walks@12#.

The second one is the functional dependence of the p
e
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ability assignmentP( i ,i 11) . In Eq. ~4! P( i ,i 11) is set as
P( i ,i 11)}ekDh( i ,i 11). One of the natural variants isP( i ,i 11)
}kDh( i ,i 11)1d, where the constantd is added in order to
preventP( i ,i 11) from being everywhere zero for the initia
flat surface or the surface with allh( i )50. We confirmed
that the variant model showsz51 scaling behavior ifd be-
comes moderately small. Ind→0 limit, we also confirmed
the layer-by-layer growth.

Final discussion is on another possible way to make
random-walk-like nonlocality in the surface growth mode
In the model considered so far the selection probability o
column pair is proportional toekDh( i ,i 11) and the growth al-
ways occurs at the chosen pair. Another possible model i
what follows. First select a pair randomly. Second the grow
at the randomly chosen pair is accepted with the rate pro
tional to ekDh( i ,i 11). This modified version of the model i
physically the same as the model considered in this pa
We realized the second step in the modified version of mo
by assigning acceptance probabilityPa of the growth at the
randomly chosen pair asPa5ekDh( i ,i 11)/ekDhmax, where
Dhmax is the maximum ofDh( i ,i 11) in the given surface
configuration. We also confirmed thez51 regime in a cer-
tain range ofk in the modified model. This modified mode
also suggests another physical way to understand
random-walk-like locality.
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